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Abstract

Previous work in hierarchical categorization focuses on

the hierarchical perceptron (Hieron) algorithm. Hierarchi-

cal perceptron works on the principals of the perceptron,

that is each label in the hierarchy has an associated weight

vector. To account for the hierarchy, we begin at the root of

the tree and sum all weights to the target label. We make

a prediction by considering the label that yields the maxi-

mum inner product of its feature set with its path-summed

weights. Learning is done by adjusting the weights along

the path from the predicted node to the correct node by

a speci�c loss function that adheres to the large margin

principal. There are several problems with applying this

approach to a multiple class problem. In many cases we

could end up punishing weights that gave a correct predic-

tion, because the algorithm can only take a single case at

a time. In this paper we present an extended hierarchical

perceptron algorithm capable of solving the multiple cat-

egorization problem (MultiHieron). We introduce a new

aggregate loss function for multiple label learning. Like

the basic Hieron algorithm margin requirements are estab-

lished and it is shown that the loss function is bounded so

long as our feature set ful�lls said margin requirements.

Then, signi�cant improvement over the basic Hieron algo-

rithm is demonstrated on the Aviation Safety Reporting Sys-

tem (ASRS) �ight anomaly database and OntoNews corpus

using both �at and hierarchical categorization metrics.

1. Introduction

The impetus behind semantic web research remains the

vision of supplementing availability with utility; that is, the

World Wide Web provides availability of digital media, but

the semantic web will allow presently available digital me-

dia to be used to serve new purposes, an example of which

is semantic level information retrieval.

The semantic web is an extension of today's Web tech-

nology; it boasts the ability to make Web resources acces-

sible by their semantic contents rather than merely by key-

words and their syntactic forms. Due to its well-established

mechanisms for expressing machine-interpretable informa-

tion, information and Web services previously available for

human consumption can be created in a well-de�ned, struc-

tured format from which machines can comprehend, pro-

cess and interoperate in an open, distributed computing en-

vironment.

At present, there are vast amounts of digital media avail-

able on the web. Once this media gets associated with

machine-understandable metadata, the web can serve as a

potentially unlimited supplier for documents, which could

populate themselves by searching via keywords and subse-

quently retrieving articles. One of the greatest challenges,

so much that it has become one of the main criticisms, in

moving toward the semantic web is the generation of this

metadata. In order for metadata creation to be feasible,

an automatic (semi-automatic) method is required because

manual metadata creation is not scalable over large quanti-

ties of information.

An ontology is a speci�cation of an abstract, simpli�ed

view of the world that we wish to represent for some pur-

pose [5] and [4]. Therefore, an ontology de�nes a set of

representational terms that we call concepts. Interrelation-

ships among these concepts describe a target world. In-

formation extraction (IE) is a process of extracting struc-

tured machine-understandable information from documents

(metadata). Ontology based information extraction (OBIE)

aims to automatically extract information from text to con-

cepts in an ontology. OBIE is a critical part of building a

useful semantic web. Without it, annotating and collecting

old data would be an extremely costly process as humans

would have to do it. From the given ontology we would

like to generate relevant concepts for documents. This can

be done by applying the hierarchical perceptron based algo-

rithm.

In this paper, we further investigate a large margin hier-

archical perceptron algorithm developed in [2]. Later Yaoy-

ong and Bontcheva demonstrated promising results by ap-

plying this algorithm to the OBIE task in [7]. They accom-

plished this by training multiple classi�ers, two for each

class in the tree and adding an extra class to the hierarchy to



capture non relevant tokens. Previous work with this algo-

rithm focused on the single concept problem, for example a

document attached to a single class. If a document is multi-

label (attached to multiple classes), the algorithm may not

work well.

In our case, we have the Aviation Safety Reporting Sys-

tem (ASRS) �ight anomaly database ([9]) and OntoNews

corpus ([7]). The ASRS database consists of a set of free-

form text documents, each having multiple labels which be-

long to a structured hierarchy (see �g 2). The OntoNews

database has been previously studied and serves as our base

test case.

Previous work in hierarchical classi�cation has focused

on single label learning. The ASRS database has motivated

us to apply hierarchical classi�cation techniques to multi-

label learning. The original hierarchical perceptron, Hieron,

worked by training a weight vectors corresponding to a la-

bels in a hierarchy. Prediction is done by reporting the path

to a label that yields the highest inner product of the features

in the sample with the summation over all weights in the

path of each label. Training is then done by adjusting rele-

vant labels. We build upon this idea to make an algorithm

that can learn documents that have multiple labels attached

to them. The main contribution of this paper is to introduce

a new multi-label update rule, analytically describe it by

bounding the loss function, and empirically show that this

approach is good.

2. Hierarchical perceptron algorithm

The hierarchical perceptron algorithm, named Hieron,

was �rst introduced by Dekel et al ([2]). It was presented as

two algorithms, an Online Hieron that came with a thorough

explanation and detailed analysis and a Batch Hieron, a few

modi�cations on top of the Online Hieron that yielded bet-

ter empirical results. This paper focuses on improvement in

the Online Hieron algorithm. Incidentally, the Batch Hieron

algorithm did not preform as well as Online Hieron when

applied to the multi-category problem (using the methods

described in section 5 of this paper).

We start by arranging our set of labels, Y , in a structured

hierarchy and giving each label an associated set of weights

wv 2 R
n where v 2 Y . Also, for each label, Wv =P

u2P (v)w
u, where P (v) is a set of nodes along the path

from the root to v. Finally, predictions are made using the

following rule,

f(x) = argmax
v2Y

Wv � x (1)

Dekel et al. also describe the online Hieron algorithm,

an ef�cient way to learn these weights. All weights are ini-

tialized to zero. During each round, denoted by timestep i,

we query the system for a prediction,

ŷi = argmax
v2Y

X

u2P (v)

wv
i � xi (2)

The resulting error is called the tree distance, denoted by

(yi; ŷi). The algorithm then assumes that there exists a

set of weights f!vgv2y such that for all instance-label pairs
(xi,yi) in the training set and r 2 Y nfyig, the following

holds
X

v2P (yi)

!v � xi �
X

u2P (r)

!u � xi �
p
(yi; r) (3)

From this, we have a loss function that forms the basis for

our update,

L(fwvg;xi; yi) =
X

v2P (yi)

!v�xi�
X

u2P (r)

!u�xi+
p
(yi; r)

(4)

Algorithm 1 Online Hieron

Initialize: 8v 2 Y : wv
0 = 0, i = 0

1. for i = 1 tom
Using (xi;yi)
2. Predict: ŷ = argmax

y2Y

P
v2P (y)w

v
i � xi

3. Update:

wv
i+1 = wv

i + �ixi, if v 2 P (y)nP (ŷ)
wv
i+1 = wv

i � �ixi, if v 2 P (ŷ)nP (y)

where �i =
L(fwv

i g;xi;yi)
(yi;ŷ)jjxijj2

Algorithm 1 is the basic Online Hieron algorithm that

has been subject to formal analysis. Other similar algo-

rithms based on the same concept exist, such as the afore-

mentioned Batch Hieron, but this paper will focus on using

the same underlying concept of the algorithm to solve a fun-

damentally different problem. In line 1, we iterate through

our entire training set, which has m training instances. On

each iteration we have a new (xi;yi). In line 2, a predic-

tion is made. If it's correct, no update is made on line 3,

if false, then only relevant nodes are updated. Updates are

made using a update rule derived by Dekel et al.[2]

3 Multi-category hierarchical perceptron

As mentioned, the Hieron algorithm has shown promis-

ing results for the single label categorization problem.

There are many cases, especially with regards to ontologies,

where we need to do multi-category prediction. The same

prediction model still holds, the prediction simply need

be re�ned to include the highest n resulting path-instance

products.



Unfortunately, learning using the ordinary Hieron algo-

rithm had a few problems. Initially we used learning algo-

rithm 1, however, intuition tells us that there are a few prob-

lems with this method. First, the problem that the original

algorithm was attempting to solve was framed in terms of

one prediction label for one true label, not many labels, so

our update rule may not work well. Second, we could have

a case where we erase important information when updates

are made for different labels on the same document as the

following example shows.

Imagine we have a document that has 2 labels. Depicted
in 1 is such a document following two different weight up-

date rules. Fig 1(a), shows how we may have an undesirable

update case by repeating predictions. The bottom right node

represents the correct label (y) and its sibling represents the
predicted node (ŷ). This is incorrect, so the weights on the

true node will be rewarded (denoted by + in �g 1(a)) while

the weights on the prediction will be punished (denoted by

� in �g 1(a)). Because they share the same parent, no other

nodes need be updated. When queried for another predic-

tion, it makes what would be the correct label in step 1, but
is the incorrect label for step 2. Here, the left-most leaf node

and second right most leaf node are predicted and the true

class, respectively (Tree in �g 1(a)). Updating now cancels

out half of the information we added to the system in step

1. It is also expensive, 6 nodes have been updated in the

process of training one document.

In 1(b), we can get more than one prediction at one time

and only 4 updates are made, on each of leaf node in the

tree. Both predictions are incorrect, but appear as siblings

of the true values, therefore only those nodes need be ad-

justed and the rest of the tree remains untouched. In other

words, left most leaf and second right most leaf nodes are

rewarded; second most leaf and right most leaf nodes are

punished. As the following sections will demonstrate, not

only does this method intuitively feel better, but it is ad-

vantageous in several ways. By updating everything in one

shot, we are taking into account all information available

for a more complete result. Also, by making multiple pre-

dictions at once we end up making fewer weight updates.

3.1 Proposed algorithm

To develop a better algorithm, the problem must be re-

de�ned in multi-category terms. The new algorithm will

assume that, for all instance-label pairs (xi,yi) in the train-

ing set and r � Y such that at least one rj 2 Y nyi, the
following margin requirements hold

X

z2yi

X

v2P (z)

!v � xi �
X

q2r

X

u2P (r)

!u � xi

�
p
(fyg; frg)

(5)

From here, and taking a similar approach to the method

(a) Original Hieron learning.

(b) MultiHieron learning.

Figure 1. Example of learning weights for the
same document containing two labels.

used in [2], we will craft MultiHieron, the multi-category

hierarchical perceptron algorithm. First, notice that our tree

distance function has changed characteristics slightly. We

now denote (V;U) to be

(V;U) = j
[

v2V

P (v)4
[

u2U

P (u)j (6)

Note that4 denotes the symmetric difference (A4B =
(AnB)

S
(BnA)) between sets. Following this, our loss

function becomes

L(fwv
i g;xi;yi) =

X

y2yi

X

v2P (y)

wv
i � xi �

X

r2r

X

u2P (r)

wu
i � xi

+
p
(yi; r)

(7)

To control learning by ensuring that the margin require-

ment is met but also keeping the updated weights close to

the previous, we follow the method provided in [2] and say,

min
fwvg

1

2

X

v2Y

jjwv �wv
i jj

2

s:t:
X

y2yi

X

v2P (y)

wv � xi �
X

ŷ2ŷi

X

u2P (ŷ)

wu � xi �
p
(yi; ŷi)

(8)

We can solve this condition using Lagrange multipliers, �i



and preform some optimization to get:

�i =
L(fwv

i g;xi; yi)

(yi; ŷi)jjxijj2
(9)

Algorithm 2 Online MultiHieron

Initialize:8v 2 Y : wv
0 = 0, i = 0

1. for i = 1; 2; :::;m:

Using: (xi;yi)
2. Predict: ŷ = argmax

y2Y
(jyij)

P
v2P (y)w

v
i � xi

3. Update:

wv
i+1 = wv

i + �ixi, if v 2
S
y2yi

P (y)
wv
i+1 = wv

i � �ixi, if v 2
S
ŷ2ŷi

P (ŷ)

�i =
L(fwv

i g;xi;yi)
(yi;ŷi)jjxijj2

Algorithm 2 is similar to algorithm 1. It iterates through

every one of the m instances in the training set in line 1.

During each iteration, line 2 gets jyij predictions, and 3

preforms weight updates if necessary. The main difference

between the two algorithms in line 3, where we are perform-

ing updates on multiple labels. Our update rule contains a

different path symmetric difference formula, de�ned as eq.

6. Also, we update each relevant prediction and true class.

4 Analysis of MultiHieron

MultiHieron is not any sort of a specialized multi-

category version of the Hieron algorithm, it is actually more

general than the original. It can be trivially shown that Mul-

tiHieron will reduce to Hieron on any single label catego-

rization problem. If yi and r have maximum size of 1 for

all i, then (yi; r) = (yi; r), the symmetric difference of

the path to only two labels. All training, updates, and pre-

dictions will remain the same.

In [2], Dekel et al. provide a theorem that implied that

the cumulative loss suffered by online Hieron is bounded as

long as the margin requirements are satis�ed. The following

is a proof of the theorem created to state this as fact.

Theorem 4.1. Let f(xi;yi)g
m
i=1 be a sequence of examples

where xi 2 R
n and yi 2 Y . Assume there exists a set

f!v : 8v 2 yg that satis�es equation 5 for all 1 � i � m.

Then, the following holds,

mX

i=1

L2(fwv
i g;xi;yi) �

X

v2Y

jj!vjj2maxR
2 (10)

where for all i, jjxijj � R and (yi; ŷi) � max.

Proof. De�ne �! to be a concatenation of all vectors in f!vg
and, likewise, �wi in the samemanner. The squared distance,

�i is
�i = jj�wi � �!jj2 � jj�wi+1 � �!jj2

Now we can get upper bounds and lower bounds on �i over
all i by,

mX

i=1

�i =
mX

i=1

jj�wi � �!jj2 � jj�wi+1 � �!jj2

= jj�w1 � �!jj2 � jj�wm � �!jj2

� jj�w1 � �!jj2

� jj�!jj2 =
X

v2Y

jj!vjj2

Thus we have our an upper bound on all
P

i2[1;m] �i.
To get our lower bound, use the minimizer of equation

8 producing a result �wi+1. Using a theorem (Censor &

Zenios, 1997, Thm. 2.4.1) [1], we have the following in-

equality,

jj�wi � �!jj2 � jj�wi+1 � �!jj2 � jj�wi � �wi+1jj
2

So, �i � jj�wi��wi+1jj
2. After updates, only weightswv

i are

updated if v 2
S
y2yi

P (y)4
S
ŷ2ŷi

P (ŷ), which means,

jj�wi � �wi+1jj
2 =
X

y2Y

jjwi �wi+1jj
2

=
X

v2 [
y2yi

P (y)4 [
ŷ2ŷi

P (ŷ)

jjwi �wi+1jj
2

Now we can use the update rule to get,

X

v2 [
y2yi

P (y)4 [
ŷ2ŷi

P (ŷ)

jjwi �wi+1jj
2 =
X

v

�2
i jjxijj

2

= (yi; ŷi)�
2
i jjxijj

2

Plugging in equation 9,

�i �
L2(fwv

i g;xi;yi)

(yi; ŷi)jjxijj2

�
L2(fwv

i g;xi;yi)

maxR2

So,

mX

i=1

L2(fwv
i g;xi;yi)

maxR2
�

mX

i=1

�i �
X

v2Y

jj!vjj2

Finally, simply multiplying both sides by max and R, we
have our original claim.

5 Experimentation

In experimentation, two datasets were used, the On-

toNews corpus and the ASRS �ight anomaly database. The



ASRS �ight anomaly database will be discussed in great

detail in section 5.1. The OntoNews corpus is a collection

of 290 ontology annotated news reports (see [8] and [7] for
more information about this corpus). These were annotated

using the Proton ontology. [10]

Previously, Hieron had shown good results at perform-

ing ontology-based information extraction on this dataset.

Because it has produced good results before, we are using it

as our base set, but in a different way. Instead of preforming

information extraction, we treat the documents as they are

treated in the ASRS database. That is, we convert each news

report to tf-idf weights and treat all annotations as labels

for the document. For example, if a document discussed a

football game, it would mention a Player, SportsBuilding,

SportsTeam, etc., that would all be treated as labels for the

document. The dataset was divided into 250 training docu-

ments and 40 test documents.

5.1 Description of ASRS anomaly
database

The Aviation Safety Reporting System (ASRS) database

is a repository of voluntary, con�dential safety information

provided by aviation personnel of all ranks, including pi-

lots, controllers, mechanics, �ight attendants and dispatch-

ers. The database includes almost 150,000 incident reports

submitted over more than 30 years. It has two major char-

acteristics that distinguish it from other datasets: a docu-

ment may have multiple anomalies (multi-categories/multi-

labels) and each category belongs in a structured hierarchy.

The dif�culties associated with categorizing the documents

as highly unstructured free form texts was addressed pre-

viously in [8], however, they lost a signi�cant amount of

highly relevant information by neglecting the underlying hi-

erarchical structure of the categorization set. The ASRS

database has 13 major classes, which are fairly general ob-

servations such as �in�ight encounter� or �con�ict�, fol-

lowed by 55 sub classes, which are much more speci�c.

A report might be labeled as both �in�ight encounter :

weather� and �cabin event : passenger misconduct�, if, say,

it was a report about a passenger acting particularly angrily

about the weather disturbing his �ight.

In experimentation, a subset of the documents were cho-

sen at random and tf-idf weights were generated to trans-

form the document to vector forms. Then the feature space

was determined through entropy calculations. Figure 3

shows the properties of the database. Our feature space has

been restricted to 3814 distinct words, chosen by entropy

analysis

Training instances 20000
Testing instances 10000
Features per instance 3814
Minimum labels per instance 1
Maximum labels per instance 10
Average labels per instance 2:71
Maximum depth of hierarchy 3
Number of leaf nodes 55

Figure 3. ASRS selected dataset information

5.2 Experimental setup

Testing utilized a threshold based method of analysing

prediction accuracy. Both systems were set up in a way

such that, when queried with an instance x, it calculates

path-weight sums (see eq 2) and return a list of labels, l,

and path sums, p sorted from most likely (highest weight)

to least likely (lowest weight). Both sets contain two sub-

sets lt(pt) and lf (pf ), corresponding to the sets of values

predicted as true and ones predicted as false, respectively.

These path sums were then normalized to values in [0; 1],
such that

P
p2p p = 1. Next, a threshold value T is de�ned

to have this property,

X

p2pt

p � T (11)

For further analysis, we will use a hierarchical error met-

ric created by Maynard et al. ([8]) called BDM. It is de�ned

as follows: given key node K and response node R, BDM
is computed as

BDM(K;R) =
BR � CP=n0

BR � CP=n0 +DPK=n2 +DPR=n3
(12)

where BR (branching factor) is the average number of

branches between the Most Speci�c Common Abstraction

(MSCA) and the key node and response node normalized

by average branching factor for the entire hierarchy, CP is

the shortest path length from root node to MSCA, DPK(R)

is the shortest path from MSCA to K(R), n0 is the aver-

age chain length of the whole hierarchy, n2 is the average

length of all chains containing K from root, and n3 is the

average length of all chains containing R from root. New

augmented precision and recall are de�ned to be (FP and

FN represent false positive and false negative counts)

AP =
BDM

BDM + FP
(13)

AR =
BDM

BDM + FN
(14)



Figure 2. Subset of ASRS database ontology. There are 55 third level nodes, 3 are shown.

Augmented precision and recall gives a better overall

picture of an algorithms performance in the hierarchical

case because we are accounting for nearness to the true

value. In �at classi�cation, we can assign a binary value

to each prediction. That is to say, it is either correct, assign

a value of 1, or it is not, assign a value of 0. In the hierar-

chical case, metrics like these allow us to better see what is

going on inside the system as it learns. BDM will still give

a value of 1 if correct, but also return a real number< 1 that
takes into account the dynamics of the tree and the location

of correct and predicted values on an error. For example,

BDM calculation for graph 1 in �gure 1(a) is as follows.

Our BR = 1:43, CP = 2, DPK = 1, DPR = 1, n0 = 3,
n2 = 1, and n3 = 1. This gives a BDM of 0:32, accord-
ing to eq. 12. In graph 2, we have a different CP = 1,
DPK = 2, and DPR = 2, therefore BDM is 0:11.

5.3 Results

By varying the threshold that distinguishes positive pre-

dictions from negative predictions, we can calculate a pre-

cision/recall curve, seen in �gure 4(a). Lets examine the

graph by looking at the points where recall is 0:6. Notice

how the precision 0:35 for MultiHieron and 0:15 for Hi-

eron. We can conclude that the MultiHieron does a signi�-

cantly better job at classifying documents in this database

that demonstrates superiority of our approach. Compare

with �gure 4(b), our base set, where a similar behaviour

is exhibited.

Using the BDM method described above, we generate

an augmented precision versus recall curve. Figure 5 gives

a dramatic lessening of the distance between the two curves.

This is in part due to the �atness of the tree, but it is also ap-

parent that the original Hieron method was good at making

predictions that are siblings of the correct label. At an aug-

mented recall of 0:6 in the curve, augmented precision is 0:3
and 0:35 for Hieron and MultiHieron, respectively. Multi-

Hieron is more suited to the task of multiple label learning.

MultiHieron also showed a speedup over Hieron. Fig-

ure 6 shows the difference in training time for Hieron and

MultiHieron. This speedup almost corresponds to the aver-

age 2:7 labels per document given in table 3. Training with

multiple labels on the original Hieron algorithm was a mul-

tiple step process, with the majority of time spent calculat-

ing all of the possible prediction paths. With MultiHieron,

only one prediction calculation need be made for each doc-

ument, therefore the speedup is proportional to the average

number of labels per document. Testing uses the exact same

algorithms and data structures because the underlying pre-

diction model for the algorithm was not changed, therefore

testing speed is the same.

6 Conclusions and future work

We have presented a more generalized hierarchical per-

ceptron algorithm, capable of doing multi-label document

training. This new algorithm preserves all of the properties

of original Hieron algorithm, and uses the same principles

to preform multi-label learning.

The ASRS �ight anomaly database posed two unique

problems. First, the anomaly reports could have more than

one label. Secondly, labels belong to a structured hierar-

chy. We addressed these problems with the MultiHieron

algorithm. MultiHieron showed improvement in both per-

formance and accuracy over Hieron in multi-label learning.

The hierarchy was not ideal for our problem. Not only is

it very �at and wide, but label paths span the entire hierar-

chy. Hieron was designed to predict labels for any point in

the hierarchy. It is still an important contribution to demon-

strate that such a signi�cant improvement can be made with

some modi�cations to the algorithm. Comparison with the

OntoNews corpus veri�ed these results.



(a) ASRS database

(b) OntoNews corpus

Figure 4. Precision versus recall for Hieron
and MultiHieron

Figure 5. Augmented precision versus re-
call for Hieron and MultiHieron on ASRS
database.

Hieron MultiHieron

ASRS Training 605:8s 253:7s
ASRS Testing 79s 79s
OntoNews Training 417:38s 58:69s
OntoNews Testing 7:1s 7:1s

Figure 6. MultiHieron shows a signi�cant per-
formance boost over Hieron for multi-label
training
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